Hay 3 tipos de mentiras: La pequeña mentira, La gran mentira y las ESTADISTICAS.

Portada

Críticas a la estadística

Un diagnostico es una probabilidad… basada en ESTADÍSTICAS.  

Leer atentamente:

Hay una percepción general de que el conocimiento estadístico es intencionado y frecuentemente mal usado, encontrando maneras de interpretar los datos que sean favorables al presentador. Un dicho famoso, al parecer de Benjamin Disraeli,21​ es: «Hay tres tipos de mentiras: mentiras pequeñas, mentiras grandes y estadísticas». El popular libro How to lie with statistics (Cómo mentir con las estadísticas en la edición española) de Darrell Huff discute muchos casos de mal uso de la estadística, con énfasis en gráficas malintencionadas. Al escoger (o rechazar o modificar) una cierta muestra, los resultados pueden ser manipulados; por ejemplo, mediante la eliminación selectiva de valores atípicos (outliers). Este puede ser el resultado de fraudes o sesgos intencionales por parte del investigador (Darrel Huff22​). Lawrence Lowell (decano de la Universidad de Harvard) escribió en 1909 que las estadísticas, «como algunos pasteles, son buenas si se sabe quién las hizo y se está seguro de los ingredientes».

Algunos estudios contradicen resultados obtenidos previamente y la población comienza a dudar en la veracidad de tales estudios. Se podría leer que un estudio dice (por ejemplo) que «hacer X reduce la presión sanguínea», seguido por un estudio que dice que «hacer X no afecta la presión sanguínea», seguido por otro que dice que «hacer X incrementa la presión sanguínea». A menudo los estudios se hacen siguiendo diferentes metodologías, o estudios en muestras pequeñas que prometen resultados maravillosos que no son obtenibles en estudios de mayor tamaño. Sin embargo, muchos lectores no notan tales diferencias, y los medios de comunicación simplifican la información alrededor del estudio y la desconfianza del público comienza a crecer.

Sin embargo, las críticas más fuertes vienen del hecho que la aproximación de pruebas de hipótesis, ampliamente usada en muchos casos requeridos por ley o reglamentación, obliga a una hipótesis a ser «favorecida» (la hipótesis nula) y puede también exagerar la importancia de pequeñas diferencias en estudios grandes. Una diferencia que es altamente significativa puede ser de ninguna significancia práctica.Véase también críticas de prueba de hipótesis y controversia de la hipótesis nula.

En los campos de la psicología y la medicina, especialmente con respecto a la aprobación de nuevos medicamentos por la Food and Drug Administration, críticas de la aproximación de prueba de hipótesis se han incrementado en los años recientes. Una respuesta ha sido un gran énfasis en el p-valor en vez de simplemente reportar si la hipótesis fue rechazada al nivel de significancia {\displaystyle \alpha } dado. De nuevo, sin embargo, esto resume la evidencia para un efecto pero no el tamaño del efecto. Una posibilidad es reportar intervalos de confianza, puesto que estos indican el tamaño del efecto y la incertidumbre. Esto ayuda a interpretar los resultados, como el intervalo de confianza para un {\displaystyle \alpha } dado indicando simultáneamente la significancia estadística y el efecto de tamaño.

El p-valor y los intervalos de confianza son basados en los mismos cálculos fundamentales como aquellos para las correspondientes pruebas de hipótesis. Los resultados son presentados en un formato más detallado, en lugar del «sí o no» de las pruebas de hipótesis y con la misma metodología estadística.

Otro tipo de aproximación es el uso de métodos bayesianos. Esta aproximación ha sido, sin embargo, también criticada.

El fuerte deseo de que los medicamentos buenos sean aprobados y que los medicamentos peligrosos o de poco uso sean rechazados crea tensiones y conflictos (errores tipo I y IIen el lenguaje de pruebas de hipótesis).

Resultado de imagen para estadisticas mienten

Fuente: Wikipedia

Soberanía en tu salud, podes hacer nuestro curso gratuito y aprender Nueva Medicina Germánica.

Posts relacionados

Respuestas

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *